
Basic For Qt® essentials
This document gives you some very important information about Qt® and
Basic For Qt®. It comes with short paragraphs for each topic to help you to
memorize it and not to overkill you with too much information.

Contents
Basic For Qt®...4
Key Features...4
Compile to C++ code with thin runtime...4
Debugging your application within Qt Creator (GCC) or VS..5
Common BASIC-like functions are built-in...5
Clean and easy syntax..6

Variable..6
Constant...6
Function Procedure- With returning a value..6
Sub Procedure - Without return a value...6
Event Procedure – Overriden super class..6
Outlet – widget in qt designer file (ui files)...6
Signal Procedure – event from widget in qt designer file (ui files)...7
Slot Procedure..7
Arguments..7

Using native C++ classes with declare statements...8
Either used as super class in the IDE or used in the Qt Designer for widgets.................................8

Direct Qt API access...8
Declare statements..8

C++ data types conversion supported:...8
File encoding..9
Variables...10

Default values are ...10
Explicitly set variable to Null..10
Outlets..10

All tools are open source..11
Resources..11
Copy directory..11
Different kind of windows:...12
Cross-platform golden rules:..12

Calling Methods...12
Dot Syntax...13
Creating Objects in code..13
Memory Management..13
Designing a Class...13
Logging..13

Golden Rules..13
Two tools for development...14

Page 1

Where does my application start?...14
MainWindow.ui..14
Init...14
Finalize...14
SerialPort..15
Team work: Basic For Qt® code and Qt Designer objects..16
Classes and Objects..16
List and Dictionary...16
Generic type id and QObject..16
Named arguments...17
Signal and Event procedures..17
Object in use...17

Property call ..17
Sub or Function called...17

Qt Designer (use of ui files)...19
Classes which cannot be instantiated...20
Classes which cannot be sub-classed...20

ui files without a code file..21
Using custom widgets in qt designer without the need to create a plugin for Qt designer
..21
Preferences...21
Overview about KBasic vs. Basic For Qt® control names..21

auto-conversion between data types..23
Create A New Project...24
Order of Init on app startup..24
How to access the QMenuBar object of the mainwindow...24
How to access the QToolBar object of the mainwindow...24
How to access the QStatusBar object of the mainwindow..25
How to get the MDI focus changes...25
QButtonGroup...25

Page 2

Page 3

Basic For Qt®
Basic For Qt® is the new language to write Qt based cross-platform software. If you have at least
moderate knowledge in simple object-oriented concepts and the BASIC language, Basic For Qt®
will not be difficult for you and you will write your own applications soon.

Key Features
• Compile to C++ binary code with thin runtime

• Common BASIC-like functions are built-in

• Clean and easy syntax

• Qt Designer (use of ui files) supported

• Resource support

• Copy directory for application data files

• Use of native C++ classes and widgets

• Create custom widgets in Basic For Qt®, also usable with Qt Designer files (ui files)

• Direct Qt API access

• Qt classes maybe overriden and extended

Compile to C++ code with thin runtime
Create modern Qt applications with a BASIC language and a garbage collector.

Page 4

Debugging your application within Qt Creator (GCC) or VS

Whenever your project gets compiled, a proper C++ project is created which can be opened in Qt
Creator (GCC mode) or in VS (on Windows).

• For Qt Creator you need to open the *.pro file inside the build directory of your project
directory.

• For VS you need to open the *.vcproj file inside the build directory of your project
directory.

It is important to set the Windows PATH environment variable to the Qt DLL files or otherwise
your application won't start.

• For Qt Creator it is the mingw directory within the Basic For Qt® installation directory

• For VS it is the vs directory within the Basic For Qt® installation directory

Another option is to copy all Qt DLL files in the gcc/build/debug directory in your project
directory.

On non-Windows computers VS is not an option, of course.

Common BASIC-like functions are built-in
Left, Mid, MsgBox, InStr...

A widget means a control in Qt terms.

Page 5

Clean and easy syntax

Variable
Dim name As type [= expression]
Public Dim name As type [= expression]
Private Dim name As type [= expression]

Constant
Const name [As type] = expression
Public Const name [As type] = expression
Private Const name [As type] = expression

Function Procedure- With returning a value
Function name(arguments) As type
Public Function name(arguments) As type
Private Function name(arguments) As type
Return expression
End Function

Sub Procedure - Without return a value
Sub name(arguments)
Public Sub name(arguments)
Private Sub name(arguments)
Return
End Sub

Event Procedure – Overriden super class
Event name(arguments)
Return
End Event

Outlet – widget in qt designer file (ui files)
Outlet name As type
Public Outlet name As type

Page 6

Private Outlet name As type

name = objectname: in qt designer

Signal Procedure – event from widget in qt designer file (ui files)
Signal name(arguments)
Return
End Signal

Follows the form “on_objectname_eventname”(arguments), e.g.

Signal on_pushButton_clicked(Checked As Boolean)
...
End Signal

objectname: in qt designer set

eventname: several widget events available

Slot Procedure
Reserved for future releases.

Arguments
Keep it empty (no arguments) or
name as type
name as type, name as type, ...

Arguments are passed by value by now. This may change in future versions. If you pass an array as
argument and change its contents in the procedure, this changes are done in the originial array.

If a built-in function or subs comes without arguments you don't need ot use () to call it.

Page 7

Using native C++ classes with declare statements

Either used as super class in the IDE or used in the Qt Designer for
widgets

• in the directory “/cpp”

• copy all needed C++ source files there

• no sub-directories are allowed yet (if you directly place C++ source files without a pro file)
and no binary versions of C++ files yet

• all files there will be automatically compiled with the project

• You may also use sub-project with sub-directories. Therefore you need to create a pro file
(NAME.pro) copy it to the /cpp directory and a sub directory (NAME) which is exactly
named like the pro file (you need to create a header file NAME.h as well including all
relavant internal header files of your sub project), e.g.

• /cpp/NAME.pro

• /cpp/NAME (the directory)

• /cpp/NAME/NAME.h (including all relavant internal header files of your sub
project)

You have to create this directory cpp in your Basic For Qt® app directory either by the by the
proper command in the IDE or manually.

Direct Qt API access
It is possible to gain access to Qt functionality, which is not yet implemented in Basic For Qt® by
using declare statements.

Declare statements
Whenever you use declare statements for a custom class, your C++ class needs to be coded in a *.h
file and *.cpp file using the same file name as the class name, e.g.

Declare Class "Q7BCodeView" -> Q7BCodeView.h + Q7BCodeView.cpp
and there must be a C++ class named Q7BCodeView in that file declared

C++ data types conversion supported:
C++ Basic For Qt®
bool Boolean
long long / int Integer
single / double Float

Page 8

QString / const QString & /
QString *

String

QStringList Array

QWidget * QWidget

Enum values are converted to Integer by default.

File encoding
All source files are treated as utf8, but all identifiers and names must be named with ascii character
only.

Page 9

Variables
All variables points to objects and a new variable automatically points to a new object by
declaration. This can be switched off by explicitely setting the variable to Null.

Default values are
Boolean = False (bool)

Integer = 0 (qint64)

Float = 0.0 (qreal)

String = ““ (QString)

else an object is assigned to the variable of its type, e.g.
Dim var As mytype ' var points to an object of type mytype

Type id (alias for QObject) is always set to Null

Explicitly set variable to Null
Prevents the automatically creation of an object of any type
Dim var as mytype = Null

Outlets
An outlet is just a variable and gets its value when the related ui file is loading. It can be any object
created in a ui file. So it is possible to set any object as an outlet, but it depends on what you try to
accomplish.

Page 10

All tools are open source
All Basic For Qt® compiler and runtime tools are all completely open-source.

Basic For Qt® uses the GCC, Qt Creator / Qt SDK (and mingw on Windows). Additional, the
compiler, runtime and IDE of Basic For Qt® are open-source as well. Despite this, there is an
option to use the Microsoft Visual Studio C++ compiler on Windows.

Resources
Having data files like texts or images loadable by your application. First option is the use of
resources, which are directly compiled in your application binary.

All files and and files of sub-directories in your project resource directory will be available as
resources within your application.

All files in are included in your applications' executable and accessable with file name with the
following form:

• “:/Resources/filename”

• “:/Resources/subdir/filename”

e.g.
MsgBox(ReadString(":/Resources/Readme.txt"))

You have to create this directory Resources in your Basic For Qt® app directory either by the by
the proper command in the IDE or manually.

Copy directory
Having data files like texts or images loadable by your application. Second option is the use of files,
which are deployed within your application directory.

All files and directories of the project directory “Copy” will be copied to the directory of the
executable.

You have to create this directory Copy in your Basic For Qt® app directory either by the by the
proper command in the IDE or manually.

Page 11

Different kind of windows:
• window (normal qwidget)

• qmainwindow (menubar + toolbar) might be sdi or mdi

• dialog (modal)

• dockwidget

• toolwindow (non-modal)

• (sheet and drawser on Mac)

The mainwindow consists of one menubar, one or more toolbars (on Mac, you normally should use
only one toolbar, keep that in mind), a statusbar on the bottom and no or several dockwidgets and
one main area (in qt terms called centralwidget), which may be used as SDI or MDI.

Windows, toolwindows, dialogs may be used as well.

menubar

Toolbar (custom
controls may be
inserted)

dockwidgets SDI or MDI dockwidgets

statusbar

QAction is used for menubar entries and toolbar entries, in fact there are shared among the two.

You should not dynamically change the entries of toolbars, because it is not common behaviour on
Mac. But changing the menu entries at runtime for example for a list of windows is common
practise on Mac as well.

Cross-platform golden rules:
• Use case-sensitive filenames

• (don't use the mainwindow title for important information, because you don't have it on
Mac)

• always use / as path separator (not \) on windows there are transformed automatically.

Calling Methods
mySub(myVar)

myOtherSub()

Page 12

Me.mySub(myVar)
if it is declared in the same code file

myObjectVar.mySub()

If a built-in function or sub comes without arguments you don't need ot use () to call it.

Dot Syntax
It is used to call subs and functions of another object or to access properties of another object.
Me.mySub(myVar)

myObjectVar.itsProperty = 23

Creating Objects in code
Dim a As Array

creates an array object and the variable a will refer to the new created array object.

Memory Management
All objects are automatically released and freed.

Designing a Class
One code file contains only one class. The class name is determined by the file name of that code
file. The file extensions determines the super class of the class.

Logging
Use MsgBox(...) to show values during developement.

Additional, there are some debug functions: stdout(...) and stderr(...)

Golden Rules
• confusing elements of C++ were omitted or hidden
• All variables in Basic For Qt® are objects; even the simple data types, like numeric and

boolean values.
• Object variables always point to an object even no object has been assigned. But pointing to

nothing (Null) can be forced in the declaration line of a variable.
• In Basic For Qt® memory management is automatically managed by a garbage collector.
• Basic For Qt® programs are compiled into C++ code, which makes them very fast.
• You do not need to use "new" for a variable declaration like in C++
• there is no separation of declaration and definition in code

Page 13

• every class can be used as a module without the need of an object to call functions and subs
of it (singletone feature) and without the need of extra coding for the developer

• To extend Basic For Qt® language features through direct call to Qt is possible
• Literals (format of numbers and string escape sequence) are the same as in C++
• Boolean literals are 'True' <> 0 and 'False' = 0
• Constants may be of any type
• Creating sub-classes from custom classes is not possible, but from built-in Qt classes
• The type Array and Dictionary as well String is very important and used in most

applications

Two tools for development
You write your code in the Basic For Qt® IDE (functions, subs and event code) and draw your GUI
using Qt Designer and save them as ui files, which can be loaded by your application automatically.
The KBasic form designer is planned to be integrated inside the IDE in some future release of Basic
For Qt® (KBasic is the ancestor of Basic For Qt®).

Where does my application start?
All GUI elements created with Qt Designer are stored as objects in a ui file, which will become
alive again when they are loaded by your application at start up. This is the first step, before any
code of you is executed.

MainWindow.ui
It get automatically loaded during your application start up. Then the event 'Init' of the file
MainWindow.QMainWindow gets called, when it has been declared by you.

Init
Every class has an event sub called Init, which gets automatically called whenever an object is
created from a class.

The Event Init of Global.QObject is the first place to be called, after that Event Init of
MainWindow.QMainWindow is called.

Finalize
Every class has an event sub called Finalize, which gets automatically called whenever an
object is going to be destroyed by the runtime, because it has no reference anymore.

If you use the singletone feature (usage of a class name instead of a variable name), your
automatically created only class object of that specific file will not get finalized when the
application quits.

Page 14

SerialPort
It is reported to be working using. (USB to Serial converter)

Page 15

Team work: Basic For Qt® code and Qt Designer objects

Overview relationship:

Basic For Qt® IDE Qt Designer
(Code) (GUI)

variables for GUI objects GUI objects
Outlet OBJECTNAME As type

event procedures for GUI events GUI objects
Signal on_OBJECTNAME_SIGNALNAME(ARGUMENTS)

Which means if you want to use GUI objects you need to declare a variable in code so that you may
use the GUI object in code and is defined for the rest of the code. It is the same for event
procedures. If you would like to react to GUI signals, you have to define for each wanted signal a
signal procedure in code.

Classes and Objects
All custom classes are declared in the Basic For Qt® IDE. Every class is written in just one code
file. The name of the code file determines the name of the class and the super class' name.
How to create objects from classes:

• Do it in code by manually instantiate from a known class. They exists as long no Null value
is assigned to the origin variable and no other variable points to that object.

List and Dictionary
May contain any variable of any type.
May also read and write xml files.
List: If you access beyound the bounds, you got a Null value returned.
Dictionary: If your key does not exists, you got a Null value returned.

Generic type id and QObject
QObject is the base class of most Qt classes and therefore often used.

id is a variable type, which may contain any variable even non-QObject based classes like
Dictionary. Variables declared with id may hold any object.

In order to call object procedures, you may change temporary the type by assigning the value to
another variable with the needed type (at compilation).

Page 16

Named arguments
Named arguments may be used, therefore it is possible to write every call of subs and functions
with named arguments.

Syntax:
mySub(namedArgument := 11)

Signal and Event procedures
Signal, Event

These procedures must not be directly called by you in code. Instead there are automatically called.

Object in use

Property call
myobject.myproperty = 23
myvar = myobject.myproperty

Sub or Function called
myobject.mysub(324)
myvar = myobject.myfunction()

You can declare custom properties for custom classes yet with a Property keyword.

Another way is that you can directly use the dynamic properties every QObject provides
automatically. Use the operator ! to access them. If your class is not based on QObject an internal
QMap of QVariants is used.

The property “myproperty” of the variable “myvar” is set and get with the following code:

myvar!myproperty = “hello”
MsgBox(myvar!myproperty)

Direct access to Qt's properties of each object by using !

e.g.

Outlet mycontrol As QPushButton ' QAbstractButton is one of its
superclasses

...

Page 17

mycontrol!text = “changed” ' qabstractbutton.html#text-prop
...

Property access: Besides String, Float, Integer, Boolean -> DateTime is supported as well. For
Decimal and the other ones convert them to a string and back.

Page 18

Qt Designer (use of ui files)
The following list contains all supported Qt designer widgets (unsupported Qt designer widgets
cannot be used in code):

Horizontal Layout: QHBoxLayout

Vertical Layout: QVBoxLayout

Grid Layout: QGridLayout

Form Layout: QFormLayout

Horizontal Spacer: Spacer

Vertical Spacer: Spacer

Push Button: QPushButton

Tool Button: QToolButton

Radio Button: QRadioButton

Check Box: QCheckBox

Command Link Button: QCommandLinkButton

Button Box: QDialogButtonBox

List Widget: QListWidget

Tree Widget: QTreeWidget

Table Widget: QTableWidget

Group Box: QGroupBox

Scroll Area: QScrollArea

Tool Box: QToolBox

Tab Widget: QTabWidget

Stacked Widget: QStackedWidget

Frame: QFrame

Widget: QWidget

MdiArea: QMdiArea

Dock Widget: QDockWidget

Combo Box: QComboBox

Font Combo Box: QFontComboBox

Line Edit: QLineEdit

Page 19

Text Edit: QTextEdit

Plain Text Edit: QPlainTextEdit

Spin Box: QSpinBox

Double Spin Box: QDoubleSpinBox

Time Edit: QTimeEdit

Date Edit: QDateEdit

Date/Time Edit: QDateTimeEdit

Dial: QDial

Horizontal Scroll Bar: QScrollBar

Vertical Scroll Bar: QScrollBar

Horizontal Slider: QSlider

Vertical Slider: QSlider

Label: QLabel

Text Browser: QTextBrowser

Calender: QCalenderWidget

LCD Number: QLCDNumber

Progress Bar: QProgressBar

Horizontal Line: QFrame

Vertical Line: QFrame

QWebView: QWebView

PhononVideoPlayer: Phonon::VideoPlayer

PhononSeekSlider: Phonon::SeekSlider

PhononVolumeSlider: Phonon::VolumeSlider

Classes which cannot be instantiated
QResizeEvent, QPaintEvent, QPainter, QCloseEvent

Classes which cannot be sub-classed
PhononVideoPlayer, PhononSeekSlider, PhononVolumeSlider

Page 20

ui files without a code file
Adding new ui widgets as windows or dialogs to your application without the need of sub-classing
(but no outlets and events are supported then). Useful only for static content, just as an about box in
your application. Create a new ui file without a code file and use it with Qt designer and save it. In
this case ui files are built-in as resources and interpreted at runtime and not included as C++ code.

Just open them with the following command.
Open("filename")

e.g. About.ui
Open("About")

Using custom widgets in qt designer without the need to
create a plugin for Qt designer

Outlet OBJECTNAME As DATATYPE Set

Set shows that the compiler should replace the stored data type (placeholder) in your ui

• use qwidget as a placeholder in Qt Designer, or otherwise make sure you use the proper
super class

• works with every layout and parent (ui files are changed before compilation)

• your replacement classs directly or indirectly must inheriting QWidget, otherwise it will fail

Preferences
are stored in the registry on windows
HKEY_CURRENT_USER\Software\”Projectname”\OrganizationDefaults

Overview about KBasic vs. Basic For Qt® control names
KBasic Basic For Qt®

Control QWidget

Form QWidget or QDialog

CommandButton QPushButton

CommandLinkButton QCommandLinkButton

ToolButton QToolButton

ImageButton ???

Page 21

Label QLabel

CheckBox QCheckBox

RadioButton QRadioButton

TextBox QLineEdit

Frame QGroupBox

ComboBox QComboBox

ListBox QListWidget

DateBox QDateBox

TimeBox QTimeBox

Sound ???

MovieBox ???

TabView QTabWidget

ImageBox ???

TreeView QTreeWidget or QTreeView

ListView QTreeWidget or QTreeView

Box QFrame

ProgressBar QProgressBar

RichTextBox QTextEdit

WebView QWebView

HtmlView QTextBrowser

ResizeBox (not needed anymore)

SvgBox ???

Slider QSlider

ScrollBar QScrollBar

SpinBox QSpinBox

MenuBarItem QAction

ToolBarItem QAction

Report ???

Header ???

Footer ???

SerialPort ???

FormView ???

FormsView ???

Line Line

ToolBarView ???

Page 22

UdpSocket ???

??? PhononVideoPlayer

??? PhononSeekSlider

??? PhononVolumeSlider

Usable in form designer, but no classes available yet, because normally you don't need their
classes:
Vertical Layout (QVBoxLayout), Horizontal Layout (QHBoxLayout), Grid Layout (QGridLayout),
Form Layout (QFormLayout), Horizontal Spacer (Spacer), Vertical Spacer (Spacer)

Fully supported:
QDialogButtonBox, QListView, QTreeView, QTableView, QColumnView, QTableWidget,
QGraphicsView, QCalenderWidget, QLCDNumber

QGroupBox, QScrollArea, QToolBox, QTabWidget, QStackedWidget, QFrame, QFontComboBox,
QPlainTextEdit, QDial,

QDockWidget, QLineEdit, QTextEdit, QSpinBox, QDoubleSpinBox, QTimeEdit, QDateEdit,
QDateTimeEdit, Horizontal ScrollBar (QScrollBar), Vertical ScrollBar (QScrollBar), Horizontal
Slider (QSlider), Vertical Slider (QSlider), QTextBrowser, Horizontal Line (Line), Vertical Line
(Line)

QLabel

auto-conversion between data types
Boolean may be assigned an object of

• Integer

• Float

Integer may be assigned an object of

• Float

• Boolean

Float may be assigned an object of

• Integer

Page 23

• Boolean

Create A New Project

Projects keep your work together. When developing an appication in Basic For Qt®, you work
mainly with projects. A project is a collection of files that make up your application. You create a
project to manage and organize these files. Basic For Qt® provides an easy yet sophisticated system
to manage the collection of files that make up a project. The project window shows each item in a
project. Starting a new application with Basic For Qt® begins with the creation of a project. So
before you can construct an application with Basic For Qt®, you need to create a new project. A
project consists of many separate files collected in one project directory.

Order of Init on app startup

1. Init of Application.QApplication

2. Init of Global.QObject

3. Init of MainWindow.QMainWindow

How to access the QMenuBar object of the mainwindow
Place the following code in the MainWindow.QMainWindow file:

Outlet menubar As QMenuBar ' be sure that the object name in Qt
designer matches this name

Signal on_menubar_hovered(Action As QAction)
 MsgBox("on_menubar_hovered " & Action.Text)
End Signal

Signal on_menubar_triggered(Action As QAction)
 MsgBox("on_menubar_triggered " & Action.Text)
End Signal

How to access the QToolBar object of the mainwindow
Be sure that you created a toolbar for the mainwindow in Qt Designer. Place the following code in
the MainWindow.QMainWindow file:

Page 24

Outlet toolbar As QToolBar ' be sure that the object name in Qt
designer matches this name

How to access the QStatusBar object of the mainwindow
Place the following code in the MainWindow.QMainWindow file:

Outlet statusbar As QStatusBar ' be sure that the object name in
Qt designer matches this name

How to get the MDI focus changes
Place the following code in the MainWindow.QMainWindow file:
Signal on_mdiArea_GotFocusMDI(theWidget As QWidget) ' be sure that
the object name in Qt designer matches this name
 MsgBox("on_mdiArea_GotFocusMDI", theWidget)
End Signal

QButtonGroup
The Qt documentation says that you normally do not need QButtonGroup, because radio buttons
with the same parent are automatically part of an exclusive group, so you normally don't need to do
anything else.

To be continued...

Qt® is a registered trade mark of Nokia Corporation and/or its subsidiaries.

Page 25

	Basic For Qt®
	Key Features
	Compile to C++ code with thin runtime
	Debugging your application within Qt Creator (GCC) or VS
	Common BASIC-like functions are built-in
	Clean and easy syntax
	Variable
	Constant
	Function Procedure- With returning a value
	Sub Procedure - Without return a value
	Event Procedure – Overriden super class
	Outlet – widget in qt designer file (ui files)
	Signal Procedure – event from widget in qt designer file (ui files)
	Slot Procedure
	Arguments

	Using native C++ classes with declare statements
	Either used as super class in the IDE or used in the Qt Designer for widgets

	Direct Qt API access
	Declare statements
	C++ data types conversion supported:

	File encoding
	Variables
	Default values are
	Explicitly set variable to Null
	Outlets

	All tools are open source
	Resources
	Copy directory
	Different kind of windows:
	Cross-platform golden rules:
	Calling Methods
	Dot Syntax
	Creating Objects in code
	Memory Management
	Designing a Class
	Logging

	Golden Rules
	Two tools for development
	Where does my application start?
	MainWindow.ui
	Init
	Finalize
	SerialPort
	Team work: Basic For Qt® code and Qt Designer objects
	Classes and Objects
	List and Dictionary
	Generic type id and QObject
	Named arguments
	Signal and Event procedures
	Object in use
	Property call
	Sub or Function called

	Qt Designer (use of ui files)
	Classes which cannot be instantiated
	Classes which cannot be sub-classed
	ui files without a code file

	Using custom widgets in qt designer without the need to create a plugin for Qt designer

	Preferences
	Overview about KBasic vs. Basic For Qt® control names
	auto-conversion between data types
	Create A New Project
	Order of Init on app startup
	How to access the QMenuBar object of the mainwindow
	How to access the QToolBar object of the mainwindow
	How to access the QStatusBar object of the mainwindow
	How to get the MDI focus changes
	QButtonGroup

